Advertisements
Advertisements
Question
Solution
\[\text{Let I} = \int\left( \frac{1 - \cot x}{1 + \cot x} \right)dx\]
\[ = \int\left( \frac{1 - \frac{\cos x}{\sin x}}{1 + \frac{\cos x}{\sin x}} \right)dx\]
\[ = \int\left( \frac{\sin x - \cos x}{\sin x + \cos x} \right)dx\]
\[\text{Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right)dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right)dx = - dt\]
\[ \therefore I = \int\frac{- dt}{t}\]
\[ = - \text{ln }\left| t \right| + C\]
\[ = - \text{ln} \left| \sin x + \cos x \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`