Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
Sum
Solution
\[\int\frac{dx}{\sqrt{7 - 6x - x^2}}\]
\[ = \int\frac{dx}{\sqrt{7 - \left( x^2 + 6x \right)}}\]
\[ = \int\frac{dx}{\sqrt{7 - \left[ x^2 + 6x + 3^2 - 3^2 \right]}}\]
\[ = \int\frac{dx}{\sqrt{7 + 9 - \left( x + 3 \right)^2}}\]
\[ = \int\frac{dx}{\sqrt{4^2 - \left( x + 3 \right)^2}}\]
\[ = \sin^{- 1} \left( \frac{x + 3}{4} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
` ∫ sec^6 x tan x dx `
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^3 \text{ log x dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]