Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
बेरीज
उत्तर
\[\int\frac{dx}{\sqrt{7 - 6x - x^2}}\]
\[ = \int\frac{dx}{\sqrt{7 - \left( x^2 + 6x \right)}}\]
\[ = \int\frac{dx}{\sqrt{7 - \left[ x^2 + 6x + 3^2 - 3^2 \right]}}\]
\[ = \int\frac{dx}{\sqrt{7 + 9 - \left( x + 3 \right)^2}}\]
\[ = \int\frac{dx}{\sqrt{4^2 - \left( x + 3 \right)^2}}\]
\[ = \sin^{- 1} \left( \frac{x + 3}{4} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \sec^4 2x \text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]