Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{\sqrt{\left( 1 - x^2 \right) \left( 9 + \left( \sin^{- 1} x \right)^2 \right)}}\]
\[\text{ let } \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} dx = dt\]
\[Now, \int\frac{dx}{\sqrt{\left( 1 - x^2 \right) \left( 9 + \left( \sin^{- 1} x \right)^2 \right)}} \]
\[ = \int\frac{dt}{\sqrt{9 + t^2}}\]
\[ = \int\frac{dt}{\sqrt{3^2 + t^2}}\]
\[ = \text{ log } \left| t + \sqrt{3^2 + t^2} \right| + C\]
\[ = \text{ log }\left| \sin^{- 1} x + \sqrt{9 + \left( \sin^{- 1} x \right)^2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ sin x \sqrt (1-cos 2x) dx `
` = ∫ root (3){ cos^2 x} sin x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .