मराठी

∫ X 2 Sin − 1 X ( 1 − X 2 ) 3 / 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{x^2 . \sin^{- 1} x dx}{\left( 1 - x^2 \right)^\frac{3}{2}}\]
\[\text{ Putting  x } = \sin \theta \]
\[ \Rightarrow dx = \cos \text{  θ   dθ } \]
\[\text{and} \theta = \sin^{- 1} x\]
\[ \therefore I = \int \frac{\sin^2 \theta . \theta . \cos \theta \text{ dθ }}{\left( 1 - \sin^2 \theta \right)^\frac{3}{2}}\]
\[ = \int \frac{\sin^2 \theta . \theta . \cos \text{  θ   dθ }}{\left( \cos^2 \theta \right)^\frac{3}{2}}\]
\[ = \int \frac{\sin^2 \theta . \theta . \cos \text{  θ   dθ } }{\cos^3 \theta}\]
\[ = \int \tan^2 \theta . \text{  θ   dθ } \]
\[ = \int \left( \sec^2 \theta - 1 \right)\theta . d\theta\]
\[ = \int \theta_I . \sec^2_{II} \text{  θ   dθ } - \int \theta . d\theta\]
\[ = \theta\int \sec^2 \text{  θ   dθ }  - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int \sec^2 \text{  θ   dθ } \right\}d\theta - \int \theta . d\theta\]
\[ = \theta \tan \theta - \int 1 . \tan\text{  θ   dθ }  - \frac{\theta^2}{2}\]
\[ = \theta . \tan \theta - \text{ ln }\left| \sec \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \theta . \frac{\sin \theta}{\cos \theta} + \text{ ln }\left| \cos \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \theta . \frac{\sin \theta}{\cos \theta} + \text{ ln }\left| \sqrt{1 - \sin^2 \theta} \right| - \frac{\theta^2}{2} + C\]
\[ = \frac{\theta . \sin \theta}{\sqrt{1 - \sin^2 \theta}} + \frac{1}{2}\text{ ln} \left| 1 - \sin^2 \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} + \frac{1}{2}\text{  ln }\left( 1 - x^2 \right) - \frac{1}{2} \left( \sin^{- 1} x \right)^2 + C \left[ \because \theta = \sin^{- 1} x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 60 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×