मराठी

∫ Cosec 2 X Cos 2 2x Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]
बेरीज

उत्तर

\[\int \text{cosec}^2 x  .\text{ cos}^2 \text{  2x  dx} \]
\[ \Rightarrow \int\text{ cosec}^2 x \left( 1 - 2 \sin^2 x \right)^2 dx\]
\[ \Rightarrow \int \text{ cosec}^2 x \left( 1 + 4 \sin^4 x - 4 \sin^2 x \right)dx\]
\[ \Rightarrow \int\left( {cosec}^2 x + 4 \sin^2 x - 4 \right)dx\]
\[ \Rightarrow \int {cosec}^2 x \text{ dx} + 4\int\left( \frac{1 - \cos 2x}{2} \right)dx - 4\int dx\]
\[ \Rightarrow - \cot x + 2 \left[ x - \frac{\sin 2x}{2} \right] - 4x + C\]
\[ \Rightarrow - \cot x + 2x - \sin 2x - 4x + C\]
\[ \Rightarrow - \cot x - \sin 2x - 2x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 10 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×