Advertisements
Advertisements
प्रश्न
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
पर्याय
- \[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
- \[\log_e a \cdot a^{x + \frac{1}{x}}\]
- \[\frac{a^{x + \frac{1}{x}}}{x} \log_e a\]
- \[x\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
उत्तर
\[\text{Let }\left( x + \frac{1}{x} \right) = t\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dt\]
\[ \therefore \int f\left( x \right)dx = \int a^t \cdot dt\]
\[ = \frac{a^t}{\log_e a} + C\]
\[ = \frac{a^{x + \frac{1}{x}}}{\log_e a} + C ...........\left( \because t = x + \frac{1}{x} \right)\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
Evaluate the following integral:
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]