मराठी

The Primitive of the Function F ( X ) = ( 1 − 1 X 2 ) a X + 1 X , a > 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]

पर्याय

  • \[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
  • \[\log_e a \cdot a^{x + \frac{1}{x}}\]
  • \[\frac{a^{x + \frac{1}{x}}}{x} \log_e a\]
  • \[x\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
MCQ

उत्तर

\[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
 
 
\[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) \cdot a^{x + \frac{1}{x}} \]
\[ \therefore \int f\left( x \right)dx = \int\left( 1 - \frac{1}{x^2} \right) \cdot a^{x + \frac{1}{x}} dx\]

\[\text{Let }\left( x + \frac{1}{x} \right) = t\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dt\]
\[ \therefore \int f\left( x \right)dx = \int a^t \cdot dt\]
\[ = \frac{a^t}{\log_e a} + C\]
\[ = \frac{a^{x + \frac{1}{x}}}{\log_e a} + C ...........\left( \because t = x + \frac{1}{x} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 24 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×