हिंदी

The Primitive of the Function F ( X ) = ( 1 − 1 X 2 ) a X + 1 X , a > 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]

विकल्प

  • \[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
  • \[\log_e a \cdot a^{x + \frac{1}{x}}\]
  • \[\frac{a^{x + \frac{1}{x}}}{x} \log_e a\]
  • \[x\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
MCQ

उत्तर

\[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
 
 
\[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) \cdot a^{x + \frac{1}{x}} \]
\[ \therefore \int f\left( x \right)dx = \int\left( 1 - \frac{1}{x^2} \right) \cdot a^{x + \frac{1}{x}} dx\]

\[\text{Let }\left( x + \frac{1}{x} \right) = t\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dt\]
\[ \therefore \int f\left( x \right)dx = \int a^t \cdot dt\]
\[ = \frac{a^t}{\log_e a} + C\]
\[ = \frac{a^{x + \frac{1}{x}}}{\log_e a} + C ...........\left( \because t = x + \frac{1}{x} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 24 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

`∫     cos ^4  2x   dx `


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫  sec^6   x  tan    x   dx `

\[\int \sin^7 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×