Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
योग
उत्तर
\[\int\frac{\sin \left( \log x \right)}{x}dx\]
\[\text{Let }\log x = t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[Now, \int\frac{\sin \left( \log x \right)}{x}dx\]
\[ = \int\text{sin }\left( \text{t }\right) dt\]
\[ = - \text{cos} \left( \text{t }\right) + C\]
\[ = - \text{cos} \left( \text{log x} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int \cos^2 \text{nx dx}\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int x \cos x\ dx\]
\[\int x \sin x \cos x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]