Advertisements
Advertisements
प्रश्न
` ∫ tan 2x tan 3x tan 5x dx `
योग
उत्तर
\[We\ know\ that, \]
\[ \tan 5x = \tan \left( 2x + 3x \right)\]
\[ \Rightarrow \tan 5x = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x}\]
\[ \Rightarrow \tan 5x - \tan 2x \tan 3x \tan 5x = \tan 2x + \tan 3x\]
\[ \Rightarrow \tan 2x \tan 3x \tan 5x = \tan 5x - \tan 2x - \tan 3x\]
\[ \therefore \int\tan 2x \tan 3x \tan 5x = \int\left( \tan 5x - \tan 2x - \tan 3x \right)dx\]
\[ = \frac{1}{5} \ln \left| \sec 5x \right| - \frac{1}{2} \ln \left| \sec 2x \right| - \frac{1}{3} \ln \left| \sec 3x \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int \sin^3 x \cos^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int x \sin x \cos x\ dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]