हिंदी

∫ Sin X − Cos X √ Sin 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 
योग

उत्तर

\[\text{ Let I } = \int\left( \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \right) dx\]
\[\text{ Putting sin x +  cos x = t}\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right) dx = - dt\]
\[\text{ Also  sin x +  cos x = t}\]
\[\text{ Squaring both sides,} \]
\[ \left( \sin x + \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x + 2 \sin x \cos x = t^2 \]
\[ \Rightarrow 1 + \text{ sin  2x }= t^2 \]
\[ \Rightarrow \text{  sin  2x} = t^2 - 1\]
\[ \therefore I = \int\frac{- dt}{\sqrt{t^2 - 1}}\]
\[ = - \text{ ln} \left| t + \sqrt{t^2 - 1} \right| + C ..........\left( \because \int\frac{dt}{\sqrt{x^2 - a^2}} = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right)\]
\[ = - \text{ ln} \left| \left( \sin x + \cos x \right) + \sqrt{\left( \sin x + \cos x \right)^2 - 1} \right| + C ..........\left( \because t = \sin x + \cos x \right)\]
\[ = - \text{ ln }\left| \left( \sin x + \cos x \right) + \sqrt{\sin^2 x + \cos^2 x + 2 \sin \cos x - 1} \right| + C\]
\[ = - \text{ ln }\left| \sin x + \cos x + \sqrt{\sin 2 x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 23 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \sin^2\text{ b x dx}\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×