हिंदी

∫ ( X + 2 ) √ 3 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]
योग

उत्तर

\[Let I = \int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\text{Putting 3x + 5 }= t\]
\[ \Rightarrow x = \frac{t - 5}{3}\]

\[\Rightarrow 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]

` ∴ I = ∫ ( {t-5} /3 +2) \sqrt t    dt/3 `
`  =1/3   ∫ ( {t-5+6} /3 ) \sqrt t    dt `
\[ = \frac{1}{9}\int\left( t^\frac{3}{2} + t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{9}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} t^\frac{5}{2} + \frac{2}{3} t^\frac{3}{2} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} \left( 3x + 5 \right)^\frac{5}{2} + \frac{2}{3} \left( 3x + 5 \right)^\frac{3}{2} \right] + C \left[ \because t = 3x + 5 \right]\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{3x + 5}{5} + \frac{1}{3} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 15 + 5}{15} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 20}{15} \right\} \right] + C\]
\[ = \frac{2}{135} \left( 3x + 5 \right)^\frac{3}{2} \left( 9x + 20 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 4 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×