हिंदी

∫ Sin − 1 √ X a + X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\text{ Putting x }= a \tan^2 \theta \Rightarrow \tan \theta = \sqrt{\frac{x}{a}}\]

\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \ \text{  θ  dθ}\]

\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right)d\theta\]

\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]

\[ = 2a \int \sin^{- 1} \left( \sin \theta \right) \tan \theta \sec^2 \text{  θ  dθ}\]

\[ = 2a \int \theta \tan \theta \sec^2 \text{  θ  dθ}\]

\[\text{Considering  θ as first function and  tan   θ  sec}^2 \text{  θ  as second function}\]

\[I = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]

\[ = a\left[ \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta \right]\]

\[ = a\left[ \theta \tan^2 \theta - \tan \theta + \theta \right] + C\]

\[ = a\left[ \theta \times \left( 1 + \tan^2 \theta \right) - \tan \theta \right] + C\]

\[ = a\left[ \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) \left( 1 + \frac{x}{a} \right) - \frac{\sqrt{x}}{\sqrt{a}} \right] + C\]

\[ = \left( x + a \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - \sqrt{ax} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 113 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \sin^4 2x\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×