हिंदी

Integrate the Following Integrals: ∫ Sin 2 X Sin 4 X Sin 6 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]
योग

उत्तर

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]
`= 1/2 ∫ (2   sin  2x   sin 4x )   sin 6x  dx `
\[ =  \frac{1}{2}\int\left[ \text{cos}\left( 2x - 4x \right) - \text{cos}\left( 2x + 4x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\int\left[ \text{cos}\left( 2x \right) - \text{cos}\left( 6x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\left[ \int\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int2\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ \text{sin}\left( 2x + 6x \right) - \text{sin}\left( 2x - 6x \right) \right] dx - \int\text{sin}\left( 12x \right) dx \right\}\]
\[ = \frac{1}{4}\left[ \int\text{sin}\left( 8x \right) dx + \int\text{sin}\left( 4x \right) dx - \int\text{sin}\left( 12x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \frac{- \text{cos}\left( 8x \right)}{8} + \frac{- \text{cos}\left( 4x \right)}{4} + \frac{\text{cos}\left( 12x \right)}{12} \right] + c\]
\[ = - \frac{\text{cos}\left( 8x \right)}{32} - \frac{\text{cos}\left( 4x \right)}{16} + \frac{\text{cos}\left( 12x \right)}{48} + c\]

Hence, \[\int\text{sin  2x   sin 4x    sin 6x   dx }= - \frac{\cos\left( 8x \right)}{32} - \frac{\cos\left( 4x \right)}{16} + \frac{\cos\left( 12x \right)}{48} + c\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.07 | Q 5 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \sin^2\text{ b x dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×