हिंदी

∫ 3 ( 1 − X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{3 dx}{\left( 1 - x \right) \left( 1 + x^2 \right)}\]
\[ = 3\int\frac{dx}{\left( 1 - x \right) \left( 1 + x^2 \right)}\]
\[\text{Let }\frac{1}{\left( 1 - x \right) \left( 1 + x^2 \right)} = \frac{A}{1 - x} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right) \left( 1 - x \right)}{\left( 1 - x \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A x^2 + A + Bx - B x^2 + C - Cx\]
\[ \Rightarrow 1 = \left( A - B \right) x^2 + \left( B - C \right)x + A + C\]
\[\text{Equating coefficients of like terms} . \]
\[A - B = 0 . . . . . \left( 1 \right)\]
\[B - C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[A = \frac{1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( 1 - x \right)} + \frac{\frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]
\[\int \frac{3 dx}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{3}{2}\int\frac{dx}{1 - x} + \frac{3}{2}\int\frac{x dx}{x^2 + 1} + \frac{3}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \frac{3}{2}\int\frac{dx}{1 - x} + \frac{3}{4}\int\frac{dt}{t} + \frac{3}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{3}{2}\frac{\log \left| 1 - x \right|}{- 1} + \frac{3}{4}\log \left| t \right| + \frac{3}{2} \times \tan^{- 1} x + C\]
\[ = \frac{- 3}{2}\log \left| 1 - x \right| + \frac{3}{4}\log \left| 1 + x^2 \right| + \frac{3}{2} \tan^{- 1} x + C\]
\[ = \frac{- 3}{4} \times 2 \log \left| 1 - x \right| + \frac{3}{4}\log \left| 1 + x^2 \right| + \frac{3}{4}\left( 2 \tan^{- 1} x \right) + C\]
\[ = \frac{3}{4}\left[ \log \left| 1 + x^2 \right| - \log \left| \left( 1 - x \right)^2 \right| \right] + \frac{3}{4}\left( 2 \tan^{- 1} x \right) + C\]
\[ = \frac{3}{4}\left[ \log \left| \frac{1 + x^2}{\left( 1 - x \right)^2} \right| + 2 \tan^{- 1} \left( x \right) \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 48 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^3 \cos x^2 dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int \sec^4 x\ dx\]


\[\int \log_{10} x\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×