Advertisements
Advertisements
प्रश्न
\[\int \sec^4 x\ dx\]
योग
उत्तर
\[\text{ Let I } = \int \sec^4 x\ dx\]
\[ = \int \sec^2 x \cdot \sec^2 x\ dx\]
\[ = \int\left( 1 + \tan^2 x \right) \cdot \sec^2 x\ dx\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx = dt}\]
\[ \therefore I = \int\left( 1 + t^2 \right) dt\]
\[ = \int dt + \int t^2 dt\]
\[ = t + \frac{t^3}{3} + C\]
\[ = \tan x + \frac{1}{3} \tan^3 x + C................ \left[ \because t = \tan x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
`int 1/(cos x - sin x)dx`
\[\int \log_{10} x\ dx\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]