हिंदी

∫ D X ( X 2 + 1 ) ( X 2 + 4 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Putting `x^2 = t`

\[\text{Then, }\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 4 \right)}\]

\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{t + 4}\]

\[ \Rightarrow 1 = A \left( t + 4 \right) + B \left( t + 1 \right)\]

Putting `t + 4 = 0`

\[ \Rightarrow t = - 4\]

\[ \therefore 1 = A \times 0 + B \left( - 3 \right)\]

\[ \Rightarrow B = - \frac{1}{3}\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[ \therefore 1 = A \left( - 1 + 4 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{3}\]

\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{1}{3 \left( t + 1 \right)} - \frac{1}{3 \left( t + 4 \right)}\]

\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3 \left( x^2 + 1 \right)} - \frac{1}{3 \left( x^2 + 2^2 \right)}\]

\[ \Rightarrow \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3}\int\frac{dx}{x^2 + 1^2} - \frac{1}{3}\int\frac{dx}{x^2 + 2^2}\]

\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{3} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{6} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 41 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×