Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
Putting `x^2 = t`
\[\text{Then, }\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 4 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{t + 4}\]
\[ \Rightarrow 1 = A \left( t + 4 \right) + B \left( t + 1 \right)\]
Putting `t + 4 = 0`
\[ \Rightarrow t = - 4\]
\[ \therefore 1 = A \times 0 + B \left( - 3 \right)\]
\[ \Rightarrow B = - \frac{1}{3}\]
Putting `t + 1 = 0`
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A \left( - 1 + 4 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{3}\]
\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 4 \right)} = \frac{1}{3 \left( t + 1 \right)} - \frac{1}{3 \left( t + 4 \right)}\]
\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3 \left( x^2 + 1 \right)} - \frac{1}{3 \left( x^2 + 2^2 \right)}\]
\[ \Rightarrow \int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)} = \frac{1}{3}\int\frac{dx}{x^2 + 1^2} - \frac{1}{3}\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{3} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{1}{3} \tan^{- 1} x - \frac{1}{6} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]