हिंदी

∫ ( X + 1 ) √ 2 X 2 + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
योग

उत्तर

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\text{ Also, x} + 1 = \lambda\frac{d}{dx}\left( 2 x^2 + 3 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 4x \right) + \mu\]
\[\text{Equating coefficient of like terms}\]
\[4\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{4} \text{ and }\mu = 1\]
\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x \right) + 1 \right] \sqrt{2 x^2 + 3} \text{ dx}\]
\[ = \frac{1}{4}\int \left( 4x \right) \sqrt{2 x^2 + 3} \text{ dx}+ \int\sqrt{2 x^2 + 3} \text{ dx}\]
\[ = \frac{1}{4}\int\left( 4x \right)\sqrt{2 x^2 + 3}\text{ dx}+ \int\sqrt{2\left( x^2 + \frac{3}{2} \right)}\text{ dx}\]
\[ = \frac{1}{4}\int\left( 4x \right) \sqrt{2 x^2 + 3} \text{ dx}+ \sqrt{2} \int\sqrt{x^2 + \left( \frac{\sqrt{3}}{\sqrt{2}} \right)^2} \text{ dx}\]
\[\text{ Let 2 x}^2 + 3 = t\]
\[ \Rightarrow 4x \text{ dx}= dt\]
\[ \therefore I = \frac{1}{4}\int \sqrt{t}\text{  dt} + \sqrt{2}\left[ \frac{x}{2}\sqrt{x^2 + \frac{3}{2}} + \frac{3}{4}\text{ log }\left| x + \sqrt{x^2 + \frac{3}{2}} \right| \right]\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] + \sqrt{2}\frac{x}{2}\frac{\sqrt{2 x^2 + 3}}{\sqrt{2}} + \frac{3\sqrt{2}}{4}\text{ log } \left| x + \frac{\sqrt{2 x^2 + 3}}{\sqrt{2}} \right| + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log } \left| \frac{\sqrt{2}x + \sqrt{2 x^2 + 3}}{\sqrt{2}} \right| + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log }\left| \sqrt{2}x + \sqrt{2 x^2 + 3} \right| - \frac{3\sqrt{2}}{4}\text{ log }\sqrt{2} + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log }\left| \sqrt{2}x + \sqrt{2 x^2 + 3} \right| + C'\]
\[\text{ Where C' = C} - \frac{3\sqrt{2}}{4}\text{ log } \sqrt{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 2 | पृष्ठ १५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×