हिंदी

∫ 1 Sin X ( 2 + 3 Cos X ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
योग

उत्तर

\[\text{  Let  I } = \int\frac{1}{\sin x \left( 2 + 3 \cos x \right)}\text{ dx}\]

\[ = \int\frac{\sin x}{\sin^2 x \left( 2 + 3 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos^2 x \right) \left( 2 + 3 \cos x \right)} dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 2 + 3 \cos x \right)} dx\]

\[\text{ Putting   cos x = t }\]

\[ \Rightarrow - \text{ sin  x  dx  = dt}\]

\[ \therefore I = \int\frac{- 1}{\left( 1 - t \right) \left( 1 + t \right) \left( 2 + 3t \right)}dt\]

\[ = \int\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)}dt\]

\[\text{ Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{3t + 2}\]

\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)} = \frac{A \left( t + 1 \right) \left( 3t + 2 \right) + B \left( t - 1 \right) \left( 3t + 2 \right) + C \left( t + 1 \right) \left( t - 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)}\]

\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 3t + 2 \right) + B \left( t - 1 \right) \left( 3t + 2 \right) + C \left( t + 1 \right) \left( t - 1 \right)\]

\[\text{ Putting  t + 1 = 0 or t = - 1}\]

\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right) \left( 3 \times - 1 + 2 \right) + C \times 0\]

\[ \therefore B = \frac{1}{2}\]

\[\text{ Now , putting t - 1 = 0 or t = 1 }\]

\[ \Rightarrow 1 = A \left( 1 + 1 \right) \left( 3 + 2 \right) + B \times 0 + C \times 0\]

\[ \therefore A = \frac{1}{10}\]

\[\text{ Now, putting 3t + 2 = 0 or t} = \frac{- 2}{3}\]

\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{2}{3} + 1 \right) \left( - \frac{2}{3} - 1 \right)\]

\[ \Rightarrow 1 = C \left( \frac{1}{3} \right) \left( \frac{- 5}{3} \right)\]

\[ \therefore C = \frac{- 9}{5}\]

\[ \therefore I = \int\frac{1}{10 \left( t - 1 \right)}dt + \frac{1}{2}\int\frac{1}{t + 1}dt - \frac{9}{5}\int\frac{1}{3t + 2}dt\]

\[ = \frac{1}{10} \text{ ln }\left| t - 1 \right| + \frac{1}{2} \text{ ln }\left| t + 1 \right| - \frac{9}{5} \text{ ln }\frac{\left| 3t + 2 \right|}{3} + C\]

\[ = \frac{1}{10} \text{ ln} \left| t - 1 \right| + \frac{1}{2} \text{ log } \left| t + 1 \right| - \frac{3}{5} \text{ ln} \left| 3t + 2 \right| + C\]

\[ = \frac{1}{10} + \text{ ln } \left| \cos x - 1 \right| + \frac{1}{2} \text{ ln }\left| \cos x + 1 \right| - \frac{3}{5} \text{ ln } \left| 3 \cos x + 2 \right| + C.......... \left[ \because t = \cos x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 66 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×