मराठी

∫ 1 Sin X ( 2 + 3 Cos X ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
बेरीज

उत्तर

\[\text{  Let  I } = \int\frac{1}{\sin x \left( 2 + 3 \cos x \right)}\text{ dx}\]

\[ = \int\frac{\sin x}{\sin^2 x \left( 2 + 3 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos^2 x \right) \left( 2 + 3 \cos x \right)} dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 2 + 3 \cos x \right)} dx\]

\[\text{ Putting   cos x = t }\]

\[ \Rightarrow - \text{ sin  x  dx  = dt}\]

\[ \therefore I = \int\frac{- 1}{\left( 1 - t \right) \left( 1 + t \right) \left( 2 + 3t \right)}dt\]

\[ = \int\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)}dt\]

\[\text{ Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{3t + 2}\]

\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)} = \frac{A \left( t + 1 \right) \left( 3t + 2 \right) + B \left( t - 1 \right) \left( 3t + 2 \right) + C \left( t + 1 \right) \left( t - 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)}\]

\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 3t + 2 \right) + B \left( t - 1 \right) \left( 3t + 2 \right) + C \left( t + 1 \right) \left( t - 1 \right)\]

\[\text{ Putting  t + 1 = 0 or t = - 1}\]

\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right) \left( 3 \times - 1 + 2 \right) + C \times 0\]

\[ \therefore B = \frac{1}{2}\]

\[\text{ Now , putting t - 1 = 0 or t = 1 }\]

\[ \Rightarrow 1 = A \left( 1 + 1 \right) \left( 3 + 2 \right) + B \times 0 + C \times 0\]

\[ \therefore A = \frac{1}{10}\]

\[\text{ Now, putting 3t + 2 = 0 or t} = \frac{- 2}{3}\]

\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{2}{3} + 1 \right) \left( - \frac{2}{3} - 1 \right)\]

\[ \Rightarrow 1 = C \left( \frac{1}{3} \right) \left( \frac{- 5}{3} \right)\]

\[ \therefore C = \frac{- 9}{5}\]

\[ \therefore I = \int\frac{1}{10 \left( t - 1 \right)}dt + \frac{1}{2}\int\frac{1}{t + 1}dt - \frac{9}{5}\int\frac{1}{3t + 2}dt\]

\[ = \frac{1}{10} \text{ ln }\left| t - 1 \right| + \frac{1}{2} \text{ ln }\left| t + 1 \right| - \frac{9}{5} \text{ ln }\frac{\left| 3t + 2 \right|}{3} + C\]

\[ = \frac{1}{10} \text{ ln} \left| t - 1 \right| + \frac{1}{2} \text{ log } \left| t + 1 \right| - \frac{3}{5} \text{ ln} \left| 3t + 2 \right| + C\]

\[ = \frac{1}{10} + \text{ ln } \left| \cos x - 1 \right| + \frac{1}{2} \text{ ln }\left| \cos x + 1 \right| - \frac{3}{5} \text{ ln } \left| 3 \cos x + 2 \right| + C.......... \left[ \because t = \cos x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 66 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×