मराठी

∫ 3 ( 1 − X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{3 dx}{\left( 1 - x \right) \left( 1 + x^2 \right)}\]
\[ = 3\int\frac{dx}{\left( 1 - x \right) \left( 1 + x^2 \right)}\]
\[\text{Let }\frac{1}{\left( 1 - x \right) \left( 1 + x^2 \right)} = \frac{A}{1 - x} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right) \left( 1 - x \right)}{\left( 1 - x \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A x^2 + A + Bx - B x^2 + C - Cx\]
\[ \Rightarrow 1 = \left( A - B \right) x^2 + \left( B - C \right)x + A + C\]
\[\text{Equating coefficients of like terms} . \]
\[A - B = 0 . . . . . \left( 1 \right)\]
\[B - C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[A = \frac{1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( 1 - x \right)} + \frac{\frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]
\[\int \frac{3 dx}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{3}{2}\int\frac{dx}{1 - x} + \frac{3}{2}\int\frac{x dx}{x^2 + 1} + \frac{3}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \frac{3}{2}\int\frac{dx}{1 - x} + \frac{3}{4}\int\frac{dt}{t} + \frac{3}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{3}{2}\frac{\log \left| 1 - x \right|}{- 1} + \frac{3}{4}\log \left| t \right| + \frac{3}{2} \times \tan^{- 1} x + C\]
\[ = \frac{- 3}{2}\log \left| 1 - x \right| + \frac{3}{4}\log \left| 1 + x^2 \right| + \frac{3}{2} \tan^{- 1} x + C\]
\[ = \frac{- 3}{4} \times 2 \log \left| 1 - x \right| + \frac{3}{4}\log \left| 1 + x^2 \right| + \frac{3}{4}\left( 2 \tan^{- 1} x \right) + C\]
\[ = \frac{3}{4}\left[ \log \left| 1 + x^2 \right| - \log \left| \left( 1 - x \right)^2 \right| \right] + \frac{3}{4}\left( 2 \tan^{- 1} x \right) + C\]
\[ = \frac{3}{4}\left[ \log \left| \frac{1 + x^2}{\left( 1 - x \right)^2} \right| + 2 \tan^{- 1} \left( x \right) \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 48 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×