मराठी

∫ E M Tan − 1 X ( 1 + X 2 ) 3 / 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^\frac{3}{2}}\text{ dx}\]

\[\text{ Putting tan}^{- 1} x = t \Rightarrow x = \tan t\]

\[ \Rightarrow \frac{1}{1 + x^2} \text{ dx}= dt\]

\[ \Rightarrow dx = \left( 1 + x^2 \right)dt\]

\[ \Rightarrow dx = \left( 1 + \tan^2 t \right)dt\]

\[ \therefore I = \int\frac{e^{mt}}{\left( 1 + \tan^2 t \right)^\frac{3}{2}}\left( 1 + \tan^2 t \right)dt\]

\[ = \int\frac{e^{mt} dt}{\sqrt{1 + \tan^2 t}}\]

\[ = \int {e_{II}}^{mt} \cos_I t \text{ dt}\]

\[ = \cos t\frac{e^{mt}}{m} - \int\left( - \sin t \right)\frac{e^{mt}}{m} \text{ dt}\]

\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m}\int e^{mt} \text{ sin t dt }\]

\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m} I_1 . . . . . \left( 1 \right)\]

\[\text{ Where,} \]

\[ I_1 = \int {e_{II}}^{mt} \sin_I t  \text{  dt}\]

\[ = \sin t\frac{e^{mt}}{m} - \int\cos t\frac{e^{mt}}{m}dt\]

\[ I_1 = \sin t\frac{e^{mt}}{m} - \frac{1}{m}I . . . . . \left( 2 \right)\]

\[\text{ from} \left( 1 \right)\text{  and }\left( 2 \right)\]

\[I = \cos t\frac{e^{mt}}{m} + \frac{1}{m} \left[ \sin t\frac{e^{mt}}{m} - \frac{1}{m}I \right]\]

\[ \Rightarrow I = \cos t\frac{e^{mt}}{m} + \frac{\text{ sin t e}^{mt}}{m^2} - \frac{1}{m^2} I\]

\[ \Rightarrow I + \frac{I}{m^2} = \frac{e^{mt} \left( m \cos t + \sin t \right)}{m^2}\]

\[ \Rightarrow I = \frac{e^{mt} \left( m \cos t + \sin t \right)}{1 + m^2} + C\]

\[ \Rightarrow I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left[ \cos t\frac{m}{\sqrt{1 + m^2}} + \sin t\frac{1}{\sqrt{1 + m^2}} \right] + C\]

\[\text{ Let }  \frac{m}{\sqrt{1 + m^2}} = \cos \theta\]

\[\text{ Then, }\sin\theta = \frac{1}{\sqrt{1 + m^2}}\]

\[ \Rightarrow \cot\theta = m\]

\[ \Rightarrow \theta = \cot^{- 1} m\]

\[ \therefore I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos t \cos \theta + \sin t \sin \theta \right\} + C\]

\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( t - \theta \right) \right\} + C\]

\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( \tan^{- 1} x - \cot^{- 1} m \right) \right\} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 121 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×