Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{\sqrt{5 x^2 - 2x}}\]
\[ = \int\frac{dx}{\sqrt{5\left( x^2 - \frac{2}{5}x \right)}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{x^2 - \frac{2}{5}x + \left( \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{\left( x - \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| x - \frac{1}{5} + \sqrt{\left( x - \frac{1}{5} \right)^2 + \left( \frac{1}{5} \right)^2} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| \frac{5x - 1}{5} + \frac{\sqrt{5 x^2 - 2x}}{\sqrt{5}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]