English

∫ 1 √ 5 X 2 − 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{5 x^2 - 2x}}\]
\[ = \int\frac{dx}{\sqrt{5\left( x^2 - \frac{2}{5}x \right)}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{x^2 - \frac{2}{5}x + \left( \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{\left( x - \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| x - \frac{1}{5} + \sqrt{\left( x - \frac{1}{5} \right)^2 + \left( \frac{1}{5} \right)^2} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| \frac{5x - 1}{5} + \frac{\sqrt{5 x^2 - 2x}}{\sqrt{5}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.17 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.17 | Q 9 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

`∫     cos ^4  2x   dx `


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫      tan^5    x   dx `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×