Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{\sqrt{5 x^2 - 2x}}\]
\[ = \int\frac{dx}{\sqrt{5\left( x^2 - \frac{2}{5}x \right)}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{x^2 - \frac{2}{5}x + \left( \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{\left( x - \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| x - \frac{1}{5} + \sqrt{\left( x - \frac{1}{5} \right)^2 + \left( \frac{1}{5} \right)^2} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| \frac{5x - 1}{5} + \frac{\sqrt{5 x^2 - 2x}}{\sqrt{5}} \right| + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
` ∫ tan^5 x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to