English

∫ √ Sin X Cos 3 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
Sum

Solution

\[ \text{ Let  I} = \int\sqrt{\sin x} \cdot \cos^3 \text{ x  dx }\]
\[ = \int\sqrt{\sin x} \cdot \left( \cos^2 x \right) \cdot \text{ cos  x  dx }\]
\[ = \int\sqrt{\sin x} \left( 1 - \sin^2 x \right) \cdot \text{ cos  x  dx}\]
\[\text{ Putting  sin x} = t\]
\[ \Rightarrow \text{ cos x  dx }= dt\]
\[ \therefore I = \int\sqrt{t} \left( 1 - t^2 \right) \cdot dt\]
\[ = \int t^\frac{1}{2} dt - \int t^\frac{1}{2} \cdot t^2 dt\]
\[ = \int t^\frac{1}{2} dt - \int t^\frac{5}{2} dt\]
\[ = \frac{t^\frac{3}{2}}{\frac{3}{2}} - \frac{t^\frac{7}{2}}{\frac{7}{2}} + C\]
\[ = \frac{2}{3} t^\frac{3}{2} - \frac{2}{7} t^\frac{7}{2} + C\]
\[ = \frac{2}{3} \text{ sin }^\frac{3}{2} \text{ x }- \frac{2}{7} \text{ sin }^\frac{7}{2} \text{ x }+ C ..........\left[ \because t = \text{ sin x }\right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 40 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \cot^4 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×