Advertisements
Advertisements
Question
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
Sum
Solution
\[\text{ Let I} = \int\frac{1}{\sin^{- 1} x \cdot \sqrt{1 - x^2}}dx\]
\[\text{ Putting sin}^{- 1} x = t\]
\[ \Rightarrow \frac{dx}{\sqrt{1 - x^2}} = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{ ln }\left| t \right| + C\]
` = \text{ ln } | sin ^-1 x| + c ( ∵ t = sin ^-1 x ) `
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int {cosec}^4 2x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]