English

∫ X ( X 2 − a 2 ) ( X 2 − B 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{x dx}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)}\]

Putting `x^2 = t`

\[ \Rightarrow 2x\ dx = dt\]

\[ \Rightarrow x\ dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[\text{Let }\frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A}{t - a^2} + \frac{B}{t - b^2}\]

\[ \Rightarrow \frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A \left( t - b^2 \right) + B \left( t - a^2 \right)}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[ \Rightarrow 1 = A \left( t - b^2 \right) + B \left( t - a^2 \right)\]

Putting `t = b^2`

\[1 = A \times 0 + B \left( b^2 - a^2 \right)\]

\[ \Rightarrow B = \frac{1}{b^2 - a^2}\]

Putting `t = a^2`

\[1 = A \left( a^2 - b^2 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{a^2 - b^2}\]

\[I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)}\int\frac{dt}{t - a^2} + \frac{1}{2 \left( b^2 - a^2 \right)}\int\frac{dt}{t - b^2}\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| t - a^2 \right| + \frac{1}{2 \left( b^2 - a^2 \right)} \log \left| t - b^2 \right| + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| t - a^2 \right| - \log \left| t - b^2 \right| \right] + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| \frac{t - a^2}{t - b^2} \right| \right] + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| \frac{x^2 - a^2}{x^2 - b^2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 24 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×