English

Evaluate the Following Integral: ∫ X 2 + 1 ( X 2 + 4 ) ( X 2 + 25 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

We express

\[\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 25}\]

\[ \Rightarrow x^2 + 1 = \left( Ax + B \right)\left( x^2 + 25 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]

Equating the coefficients of `x^3 , x^2 , x` and constants, we get

\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 25A + 4C\text{ and }1 = 25B + 4D\]

\[\text{or }A = 0\text{ and }B = - \frac{1}{7}\text{ and }C = 0\text{ and }D = \frac{8}{7}\]

\[ \therefore I = \int\left( \frac{- \frac{1}{7}}{x^2 + 4} + \frac{\frac{8}{7}}{x^2 + 25} \right)dx\]

\[ = - \frac{1}{7}\int\frac{1}{x^2 + 4}dx + \frac{8}{7}\int\frac{1}{x^2 + 25} dx\]

\[ = - \frac{1}{7} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{8}{7} \times \frac{1}{5} \tan^{- 1} \frac{x}{5} + c\]

\[ = - \frac{1}{14} \tan^{- 1} \frac{x}{2} + \frac{8}{35} \tan^{- 1} \frac{x}{5} + c\]

\[\text{Hence, }\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx = - \frac{1}{14} \tan^{- 1} \frac{x}{2} + \frac{8}{35} \tan^{- 1} \frac{x}{5} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 25 | Page 177

RELATED QUESTIONS

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×