Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let }I = \int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]
We express
\[\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 25}\]
\[ \Rightarrow x^2 + 1 = \left( Ax + B \right)\left( x^2 + 25 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]
Equating the coefficients of `x^3 , x^2 , x` and constants, we get
\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 25A + 4C\text{ and }1 = 25B + 4D\]
\[\text{or }A = 0\text{ and }B = - \frac{1}{7}\text{ and }C = 0\text{ and }D = \frac{8}{7}\]
\[ \therefore I = \int\left( \frac{- \frac{1}{7}}{x^2 + 4} + \frac{\frac{8}{7}}{x^2 + 25} \right)dx\]
\[ = - \frac{1}{7}\int\frac{1}{x^2 + 4}dx + \frac{8}{7}\int\frac{1}{x^2 + 25} dx\]
\[ = - \frac{1}{7} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{8}{7} \times \frac{1}{5} \tan^{- 1} \frac{x}{5} + c\]
\[ = - \frac{1}{14} \tan^{- 1} \frac{x}{2} + \frac{8}{35} \tan^{- 1} \frac{x}{5} + c\]
\[\text{Hence, }\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx = - \frac{1}{14} \tan^{- 1} \frac{x}{2} + \frac{8}{35} \tan^{- 1} \frac{x}{5} + c\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int x/(x^4 - 1) "d"x`