English

∫ X 3 − 3 X X 4 + 2 X 2 − 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]
Sum

Solution

\[I = \int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]
\[= \int\frac{x( x^2 - 3)}{x^4 + 2 x^2 - 4}dx\]

Let 

\[x^2 = t\] , or , 
\[2xdx = dt\]

\[\Rightarrow I = \frac{1}{2}\int\frac{(t - 3)}{t^2 + 2t - 4}dt\]
\[ = \frac{1}{4}\int\frac{2t - 6}{t^2 + 2t - 4}dt\]
\[ = \frac{1}{4}\int\frac{2t + 2 - 8}{t^2 + 2t - 4}dt\]
\[ = \frac{1}{4}\int\left( \frac{2t + 2}{t^2 + 2t - 4} - \frac{8}{t^2 + 2t - 4} \right)dt\]
\[ = \frac{1}{4}\left( \int\frac{2t + 2}{t^2 + 2t - 4}dt - \int\frac{8}{t^2 + 2t - 4}dt \right)\]

\[\Rightarrow I = \frac{1}{4}\left( I_1 + I_2 \right) . . . \left( i \right)\]

Now,

\[I_1 = \int\frac{2t + 2}{t^2 + 2t - 4} dt\]
\[t^2 + 2t - 4 = u\]

\[or, \left( 2t + 2 \right)dt = du\]
\[ \Rightarrow I_1 = \int\frac{1}{u} du = \text{ ln }\left| u \right| + c_1 \]
\[ \Rightarrow I_1 = \text{ ln }\left| t^2 + 2t - 4 \right| + c_1 \]
\[ \therefore I_1 = \text{ ln }\left| x^4 + 2 x^2 - 4 \right| + c_1\]

Now,

\[I_2 = \int\frac{- 8}{(t + 1 )^2 - 5}dt\]
\[ \Rightarrow I_2 = \int\frac{8}{(\sqrt{5} )^2 - (t + 1 )^2}dt\]
\[ \therefore I_2 = \frac{8}{2\sqrt{5}}\ln\left| \frac{\sqrt{5} + x^2 + 1}{\sqrt{5} - x^2 - 1} \right| + c_2\]

\[\text{ So, from }\left( i \right), \text{ we get}\]
\[I = \frac{1}{4}\left[ \text{ ln}\left| x^4 + 2 x^2 - 4 \right| + \frac{4}{\sqrt{5}}\text{ ln} \left| \frac{\sqrt{5} + x^2 + 1}{\sqrt{5} - x^2 - 1} \right| \right] + C\]
\[ \therefore I = \frac{1}{4}\text{ ln}\left| x^4 + 2 x^2 - 4 \right| + \frac{1}{\sqrt{5}}\text{ ln }\left| \frac{\sqrt{5} + x^2 + 1}{\sqrt{5} - x^2 - 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 17 | Page 104

RELATED QUESTIONS

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×