English

Evaluate the Following Integrals: ∫ X + 2 √ X 2 + 2 X + 3 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{x + 2}{\sqrt{x^2 + 2x + 3}}dx\]
\[\text{  We express  }x + 2 = A\left( \frac{d}{d x}\left( x^2 + 2x + 3 \right) \right) + B\]
\[x + 2 = \text{  A(2x + 2) }+ B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[\text{  1 = 2A and 2 = 2A + B }\]
\[\text{ or A }= \frac{1}{2} \text{ and B = 1}\]
\[ \therefore I = \int\frac{\frac{1}{2}\left( 2x + 2 \right) + 1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right)}{\sqrt{x^2 + 2x + 3}}dx + \int\frac{1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \frac{1}{2} I_1 + I_2 . . . (1)\]
\[\text{ Now, }I_1 = \int\frac{\left( 2x + 2 \right)}{\sqrt{x^2 + 2x + 3}}dx\]
\[ \text{ Let }x^2 + 2x + 3 = u\]
` \text{ On differentiating both sides, we get `
\[ \left( 2x + 2 \right)dx = du\]
\[ \therefore I_1 = \int\frac{1}{\sqrt{u}}du\]
\[ = 2\sqrt{u} + c_1 \]
\[ = 2\sqrt{x^2 + 2x + 3} + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\frac{1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \int\frac{1}{\sqrt{x^2 + 2x + 1 - 1 + 3}}dx\]
\[ = \int\frac{1}{\sqrt{\left( x + 1 \right)^2 + \left( \sqrt{2} \right)^2}}dx\]
\[ \text{ Let}\left( x + 1 \right) = u\]
`   \text{ On differentiating both sides, we get `
\[ dx = du\]
\[ \therefore I_2 = \int\frac{1}{\sqrt{\left( u \right)^2 + \left( \sqrt{2} \right)^2}}du\]
\[ = \text{ log}\left| u + \sqrt{\left( u \right)^2 + \left( \sqrt{2} \right)^2} \right| + c_2 \]
\[ = \text{ log}\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get}\]
\[ \therefore I = \frac{1}{2}\left( 2\sqrt{x^2 + 2x + 3} + c_1 \right) + \text{ log}\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c_2 \]
\[ = \sqrt{x^2 + 2x + 3} + \text{ log  }\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c\]
\[\text{ Hence, }\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}}dx = \sqrt{x^2 + 2x + 3} + \log\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 18 | Page 111

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×