Advertisements
Advertisements
Question
Solution
\[\text{Let I} = \int\left( \frac{1 + \ tanx}{1 - \ tanx} \right)dx\]
\[ = \int\left( \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} \right)dx\]
\[ = \int\left( \frac{\cos x + \sin x}{\cos x - \sin x} \right)dx\]
\[Putting\ \cos\ x - \sin x = t\]
\[ \Rightarrow \left( - \sin x - \cos x \right)dx = dt\]
\[ \Rightarrow \left( \sin x + \cos x \right)dx = - dt\]
\[ \therefore I = - \int\frac{1}{t}dt\]
\[ = - \text{ln }\left| t \right| + C\]
\[ = - \text{ln }\left| \cos x - \sin x \right| + C \left[ \because t = \cos x - \sin x \right]\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`