English

Evaluate the Following Integrals: ∫ X 2 ( X − 1 ) ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]
Sum

Solution

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\frac{x^2}{(x - 1)( x^2 + 1)} = \frac{A}{(x - 1)} + \frac{Bx + C}{x^2 + 1}\]
\[ = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x - 1 \right)}{(x - 1)( x^2 + 1)}\]
\[ \Rightarrow \frac{x^2}{(x - 1)( x^2 + 1)} = \frac{(A + B) x^2 + (C - B)x + \left( A - C \right)}{(x - 1)( x^2 + 1)}\]

Comparing coefficients, we get

\[A + B = 1; C - B = 0\text{ and }A - C = 0\]
\[\text{Solving these equations, we get}\]
\[A = B = C = \frac{1}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{(x - 1)}dx + \frac{1}{2}\int\frac{x}{x^2 + 1}dx + \frac{1}{2}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{2}\ln\left| x - 1 \right| + \frac{1}{4}\ln\left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 57 | Page 177

RELATED QUESTIONS

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×