Advertisements
Advertisements
Question
Evaluate the following integrals:
Solution
\[\frac{x^2}{(x - 1)( x^2 + 1)} = \frac{A}{(x - 1)} + \frac{Bx + C}{x^2 + 1}\]
\[ = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x - 1 \right)}{(x - 1)( x^2 + 1)}\]
\[ \Rightarrow \frac{x^2}{(x - 1)( x^2 + 1)} = \frac{(A + B) x^2 + (C - B)x + \left( A - C \right)}{(x - 1)( x^2 + 1)}\]
Comparing coefficients, we get
\[A + B = 1; C - B = 0\text{ and }A - C = 0\]
\[\text{Solving these equations, we get}\]
\[A = B = C = \frac{1}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{(x - 1)}dx + \frac{1}{2}\int\frac{x}{x^2 + 1}dx + \frac{1}{2}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{2}\ln\left| x - 1 \right| + \frac{1}{4}\ln\left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + c\]
APPEARS IN
RELATED QUESTIONS
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)