Advertisements
Advertisements
Question
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Solution
Let I = `int sqrt(1 + x^2)/x^4 "d"x`
= `int sqrt(x^2 (1 + 1/x^2))/x^4 "d"x`
= `int (xsqrt(1 + 1/x^2))/x^4 "d"x`
= `int (xsqrt(1 + 1/x^2))/x^4 "d"x`
Put `1 + 1/x^2` = r2
⇒ `(-2)/x^3 "d"x = 2"t" "dt"`
⇒ `- "dx"/x^3` = t dt
∴ I = `- int "t"^2 "dt"`
= `- "t"^3/3 + "C"`
= `- 1/3(1 + 1/x^2)^(3/2) + "C"`
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`