Advertisements
Advertisements
Question
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Solution
Let I = `int ("d"x)/sqrt(16 - 9x^2)`
= `1/3 int ("d"x)/sqrt(16/9 - x^2)`
= `1/3 int ("d"x)/sqrt((4/3)^2 - x^2)`
= `1/3 sin^-1 x/(4/3) + "C"` ....`[because int ("d"x)/sqrt("a"^2 - x^2) = sin^-1 x/"a" + "C"]`
∴ I = `1/3 sin^-1 (3x)/4 + "C"`
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)