Advertisements
Advertisements
Question
Solution
\[\text{Let I} = \int\frac{{cosec}^2 x}{1 + \cot x}dx\]
\[\text{Putting}\ \text{cot x} = t\]
\[ \Rightarrow - {cosec}^2 x = \frac{dt}{dx}\]
\[ \Rightarrow {cosec}^\text{2} \text{ x dx }= - dt\]
\[ \therefore I = \int\frac{- dt}{1 + t}\]
\[ = - \text{ln} \left| 1 + t \right| + C\]
\[ = - \text{ln }\left| 1 + \cot x \right| + C \left[ \because t = \cot x \right]\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`