Advertisements
Advertisements
Question
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Solution
\[ = \int\left( x^\frac{1}{2} - x^\frac{3}{2} \right) dx\]
\[ = \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} + c\]
\[ = \frac{2}{3} x^\frac{3}{2} - \frac{2}{5} x^\frac{5}{2} + c\]
\[\text{ Hence,} \int\left( 1 - x \right)\sqrt{x} \text{ dx }= \frac{2}{3} x^\frac{3}{2} - \frac{2}{5} x^\frac{5}{2} + c\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`