English

∫ a X 2 + B X + C ( X − a ) ( X − B ) ( X − C ) D X , Where A, B, C Are Distinct - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]
Sum

Solution

We have,

\[I = \int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx\]

\[\text{Let }\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}\]

\[ \Rightarrow a x^2 + bx + c = A\left( x - b \right) \left( x - c \right) + B \left( x - c \right)\left( x - a \right) + C\left( x - a \right) \left( x - b \right)\]

\[ \Rightarrow a x^2 + bx + c = A\left[ x^2 - \left( b + c \right)x + bc \right] + B\left[ x^2 - \left( c + a \right)x + ca \right] + C\left[ x^2 - \left( a + b \right)x + ab \right]\]

\[ \Rightarrow a x^2 + bx + c = \left( A + B + C \right) x^2 - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right]x + Abc + Bca + Cab\]

Equating the coefficients on both sides, we get

\[a = A + B + C ...............(1)\]

\[b = - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right] ..................(2)\]

\[c = Abc + Bca + Cab .................(3)\]

Solving (1), (2) and (3), we get

\[A = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\]

\[B = \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\]

\[C = \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\]

\[ \therefore I = \int\left[ \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)} \times \frac{1}{x - a} + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)} \times \frac{1}{x - b} + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)} \times \frac{1}{x - c} \right] dx\]

\[ = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\log \left| x - a \right| + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\log \left| x - b \right| + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\log \left| x - c \right| + K\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 15 | Page 176

RELATED QUESTIONS

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×