Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx\]
\[\text{Let }\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}\]
\[ \Rightarrow a x^2 + bx + c = A\left( x - b \right) \left( x - c \right) + B \left( x - c \right)\left( x - a \right) + C\left( x - a \right) \left( x - b \right)\]
\[ \Rightarrow a x^2 + bx + c = A\left[ x^2 - \left( b + c \right)x + bc \right] + B\left[ x^2 - \left( c + a \right)x + ca \right] + C\left[ x^2 - \left( a + b \right)x + ab \right]\]
\[ \Rightarrow a x^2 + bx + c = \left( A + B + C \right) x^2 - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right]x + Abc + Bca + Cab\]
Equating the coefficients on both sides, we get
\[a = A + B + C ...............(1)\]
\[b = - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right] ..................(2)\]
\[c = Abc + Bca + Cab .................(3)\]
Solving (1), (2) and (3), we get
\[A = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\]
\[B = \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\]
\[C = \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\]
\[ \therefore I = \int\left[ \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)} \times \frac{1}{x - a} + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)} \times \frac{1}{x - b} + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)} \times \frac{1}{x - c} \right] dx\]
\[ = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\log \left| x - a \right| + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\log \left| x - b \right| + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\log \left| x - c \right| + K\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate:
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`