Advertisements
Advertisements
Question
Solution
\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]
` ∫ \sqrt {{2 sin^2 x/2} / {2 cos^2 x/2 }} dx` `[ ∵ 1 - cos x = 2 sin^2 x/2 & 1 + cos x = 2 cos ^2 x/2]`
\[ = \int\tan\frac{x}{2} dx\]
\[ =\text{ - 2 }\text{ln }\left| \cos\frac{x}{2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)