Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int\frac{1}{\sin x + \cos x}dx\]
\[\text{ Putting sin x }= \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} and \cos x = \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ = \int \frac{1}{\frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} + \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{1 - \tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right)} dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{1 - t^2 + 2t}\]
\[ = - 2 \int \frac{dt}{t^2 - 2t - 1}\]
\[ = - 2 \int \frac{dt}{t^2 - 2t + 1 - 2}\]
\[ = 2\int \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{2}}\text{ ln }\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ ln }\left| \frac{\sqrt{2} + \tan \frac{x}{2} - 1}{\sqrt{2} - \tan \frac{x}{2} + 1} \right| + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`