English

∫ 1 Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{1}{\sin x + \cos x}dx\]
\[\text{ Putting  sin x }= \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} and \cos x = \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ = \int \frac{1}{\frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} + \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{1 - \tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right)} dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{1 - t^2 + 2t}\]
\[ = - 2 \int \frac{dt}{t^2 - 2t - 1}\]
\[ = - 2 \int \frac{dt}{t^2 - 2t + 1 - 2}\]
\[ = 2\int \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]


\[ = 2 \times \frac{1}{2\sqrt{2}}\text{ ln }\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ ln }\left| \frac{\sqrt{2} + \tan \frac{x}{2} - 1}{\sqrt{2} - \tan \frac{x}{2} + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 9 | Page 117

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×