English

∫1cosx-sinxdx - Mathematics

Advertisements
Advertisements

Question

`int 1/(cos x - sin x)dx`
Sum

Solution

Given I = `int 1/(cos x - sin x)dx`

We know that sin x = `(2 tan (x/2))/(1 + tan^2 (x/2)) and cos x = (1 - tan^2 (x/2))/(1 + tan^2 (x/2))`

⇒ `int 1/(-sin x + cos x)dx = int 1/(- (2 tan (x/2))/(1 + tan^2 (x/2)) + (1 - tan^2 (x/2))/(1 + tan^2 (x/2)))`

= `int (1 + tan^2 (x/2))/(-2 tan (x/2)+1 - tan^2 (x/2))dx`

Replacing 1 + tan2 x/2 in numerator by sec2 x/2 and putting tan x/2 = t and sec2 x/2 dx = 

⇒ `int (1 + tan^2 (x/2))/(-2 tan (x/2) + 1 - tan^2 (x/2))dx`

= `int (sec^2 (x/2))/(- tan^2 (x/2) - 2 tan (x/2) + 1) dx`

= `- int (2dt)/(t^2 + 2t - 1)`

= `-2 int 1/((t + 1)^2 - (sqrt2)^2)dt`

= `2 int 1/((sqrt2)^2 - (t + 1)^2)dt`

We know that `int 1/(a^2 - x^2)dx = 1/(2a) log |(a + x)/(a - x)| + c`

= `2 int 1/((sqrt2)^2 - (t + 1)^2)dt`

= `2/(2sqrt2)log|(sqrt2 + t + 1)/(sqrt2 - t - 1)|+c`

= `1/sqrt2 log|(sqrt2 + tan (x/2)+1)/(sqrt2 - tan (x/2)-1)| + c`

= `1/sqrt2 log |(sqrt2 + tan (x/2) +1)/(sqrt2 - tan (x/2)-1)| + c`

∴ I = `int 1/(cos x - sin x)dx = 1/sqrt2 log |(sqrt2 + tan (x/2)+ 1)/(sqrt2 - tan (x/2) - 1)|+x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 8 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int x^3 \cos x^4 dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×