English

∫ √ 1 + Cos 2 X 1 − Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
Sum

Solution

\[\int\sqrt{\frac{1 + \cos2x}{1 - \cos2x}}dx\]
\[ = \int\sqrt{\frac{2 \cos^2 x}{2 \sin^2 x}}dx\]
\[ = \int\ \text{cot  x  dx}\]
\[ = \text{ln} \left| \text{sin  x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 3 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×