English

∫ ( 5 X + 3 ) √ 2 X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
Sum

Solution

\[\text{Let I} = \int\left( 5x + 3 \right) \sqrt{2x - 1}dx\]
\[Putting\ 2x - 1 = t\]
\[ \Rightarrow 2x = t + 1\]
\[ \Rightarrow x = \frac{t + 1}{2}\]

\[\text{and}\ 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]

\[\therefore I = \int\left[ 5\left( \frac{t + 1}{2} \right) + 3 \right] \cdot \sqrt{t} \cdot \frac{dt}{2}\]

` = ∫ ( 5t / 2 + 5/2 + 3 ) ×( \sqrt t   dt) /2 `
\[ = \frac{1}{4}\int\left( 5t + 11 \right) t^\frac{1}{2} dt\]
\[ = \frac{1}{4}\int\left( 5 t^\frac{3}{2} + 11 t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{4}\left[ 5\frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + 11\frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]


\[ = \frac{1}{4} \times \frac{2}{5} \times  \text{5 } t^\frac{5}{2} + \frac{1}{4} \times 11 \times \frac{2}{3}\text{ t}^\frac{3}{2} + C\]
\[ = \frac{1}{2} t^\frac{5}{2} + \frac{11}{6} t^\frac{3}{2} + C\]


\[ = \frac{t^\frac{3}{2}}{2}\left[ t + \frac{11}{3} \right] + C\]


\[ = \frac{t^\frac{3}{2}}{2}\left[ \frac{3t + 11}{3} \right] + C\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2}}{2}\left[ \frac{3\left( 2x - 1 \right) + 11}{3} \right] + C \left[ \because t = 2x - 1 \right]\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2}}{2}\left[ \frac{6x - 3 + 11}{3} \right] + C\]


\[ = \left( \frac{2x - 1}{2} \right)^\frac{3}{2} \left[ \frac{2 \left( 3x + 4 \right)}{3} \right] + C\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2} \left( 3x + 4 \right)}{3} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.05 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.05 | Q 9 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×