English

∫ 1 √ a 2 + B 2 X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{a^2 + b^2 x^2}}\]
\[ = \int\frac{dx}{\sqrt{b^2 \left( \frac{a^2}{b^2} + x^2 \right)}}\]
\[ = \frac{1}{b}\int\frac{dx}{\sqrt{x^2 + \left( \frac{a}{b} \right)^2}}\]
\[ = \frac{1}{b} \text{  log }\left| x + \sqrt{x^2 + \frac{a^2}{b^2}} \right| + C\]
\[ = \frac{1}{b}\left[ \text{ log }\left| x + \frac{\sqrt{b^2 x^2 + a^2}}{b} \right| \right] + C\]
\[ = \frac{1}{b}\left[ \text{  log }\left| \frac{bx + \sqrt{b^2 x^2 + a^2}}{b} \right| \right] + C\]
\[ = \frac{1}{b}\left[ \text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| - \text{ log b }\right] + C\]
\[ = \frac{1}{b} \text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| - \frac{\log b}{b} + C\]
\[\text{  let C} - \frac{\log b}{b} = C'\]
\[ = \frac{1}{b}\text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.14 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.14 | Q 6 | Page 83

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×