मराठी

∫ 1 √ a 2 + B 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sqrt{a^2 + b^2 x^2}}\]
\[ = \int\frac{dx}{\sqrt{b^2 \left( \frac{a^2}{b^2} + x^2 \right)}}\]
\[ = \frac{1}{b}\int\frac{dx}{\sqrt{x^2 + \left( \frac{a}{b} \right)^2}}\]
\[ = \frac{1}{b} \text{  log }\left| x + \sqrt{x^2 + \frac{a^2}{b^2}} \right| + C\]
\[ = \frac{1}{b}\left[ \text{ log }\left| x + \frac{\sqrt{b^2 x^2 + a^2}}{b} \right| \right] + C\]
\[ = \frac{1}{b}\left[ \text{  log }\left| \frac{bx + \sqrt{b^2 x^2 + a^2}}{b} \right| \right] + C\]
\[ = \frac{1}{b}\left[ \text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| - \text{ log b }\right] + C\]
\[ = \frac{1}{b} \text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| - \frac{\log b}{b} + C\]
\[\text{  let C} - \frac{\log b}{b} = C'\]
\[ = \frac{1}{b}\text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.14 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.14 | Q 6 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \log_{10} x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×