मराठी

∫ X ( X 2 + 4 ) √ X 2 + 9 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int\frac{x dx}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}}\]
\[\text{ Putting  x}^2 = t\]
\[ \Rightarrow 2x \text{ dx } = dt\]
\[ \Rightarrow x \text{ dx} = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t + 4 \right) \sqrt{t + 9}}\]
\[\text{ Again Putting  t} + 9 = u^2 \]
\[ \Rightarrow dt = 2u\text{  du }\]
\[ \therefore I = \frac{1}{2}\int\frac{2u \text{ du}}{\left( u^2 - 9 + 4 \right) u}\]
\[ = \int\frac{du}{u^2 - 5}\]
\[ = \int\frac{du}{u^2 - \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{2\sqrt{5}} \text{ log } \left| \frac{u - \sqrt{5}}{u + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ log } \left| \frac{\sqrt{t + 9} - \sqrt{5}}{\sqrt{t + 9} + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ log} \left| \frac{\sqrt{x^2 + 9} - \sqrt{5}}{\sqrt{x^2 + 9} + \sqrt{5}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 14 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×