मराठी

∫ 1 + Sin X Sin X ( 1 + Cos X ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]

बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\left( 1 + \sin x \right)}{\sin x \left( 1 + \cos x \right)}dx\]
\[\text{ Putting   sin x } = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\text{ and }\text{ cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{\left( 1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}{\frac{\left( 2 \tan \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right)} \left( 1 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) \left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 2 \tan \frac{x}{2} \right) \left( 1 + \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \frac{1}{4}\int\frac{\left( 1 + \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) \sec^2 \frac{x}{2}}{\tan \frac{x}{2}} \text{ dx}\]
\[\text{ Putting tan} \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \text{ dx} = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) \text{ dx } = 2dt\]
\[ \therefore I = \frac{1}{4}\int\frac{\left( 1 + t^2 + 2t \right) \cdot \left( \text{ 2  dt} \right)}{t}\]
\[ = \frac{1}{2}\int\left( \frac{1}{t} + t + 2 \right) dt\]
\[ = \frac{1}{2} \left[ \text{ ln  }\left| t \right| + \frac{t^2}{2} + 2t \right] + C\]
\[ = \frac{1}{2} \left[ \text{ ln } \left| \text{ tan} \frac{x}{2} \right| + \frac{\tan^2 \left( \frac{x}{2} \right)}{2} + 2 \tan \left( \frac{x}{2} \right) \right] + C....... \left[ \because t = \tan \frac{x}{2} \right]\]
\[ = \frac{1}{2} \text{ ln } \left| \text{ tan  }\frac{x}{2} \right| + \frac{1}{4} \tan^2 \frac{x}{2} + \tan\frac{x}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 72 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×