Advertisements
Advertisements
प्रश्न
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
बेरीज
उत्तर
\[\int\left( \frac{e^{m \tan^{- 1} x}}{1 + x^2} \right)dx\]
\[\text{Let} \tan^{- 1} x = t\]
\[ \Rightarrow \left( \frac{1}{1 + x^2} \right)dx = dt\]
\[Now, \int\left( \frac{e^{m \tan^{- 1} x}}{1 + x^2} \right)dx\]
\[ = \int e^{mt} dt\]
\[ = \frac{e^{mt}}{m} + C\]
\[ = \frac{e^{m \tan^{- 1} x}}{m} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]