Advertisements
Advertisements
प्रश्न
\[\int \log_{10} x\ dx\]
बेरीज
उत्तर
\[\int \log_{10} x\ dx\]
\[ = \int\frac{\log_e x}{\log_e 10} dx\]
\[ = \frac{1}{\log_e 10}\int 1_{II} \cdot \log_I x \text{ dx}\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x\int1 \text{ dx} - \int\left\{ \frac{d}{dx}\left( \log_e x \right)\int1 \text{ dx} \right\}\text{ dx}\right]\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x \cdot x - \int\frac{1}{x} \times x \text{ dx} \right]\]
\[ = \frac{1}{\log_e 10}\left[ x \log_e x - x \right] + C\]
\[ = \frac{1}{\log_e 10} \times x \left( \log_e x - 1 \right) + C\]
\[ = x \left( \log_e x - 1 \right) \cdot \log_{10} e + C\]
\[ = \int\frac{\log_e x}{\log_e 10} dx\]
\[ = \frac{1}{\log_e 10}\int 1_{II} \cdot \log_I x \text{ dx}\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x\int1 \text{ dx} - \int\left\{ \frac{d}{dx}\left( \log_e x \right)\int1 \text{ dx} \right\}\text{ dx}\right]\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x \cdot x - \int\frac{1}{x} \times x \text{ dx} \right]\]
\[ = \frac{1}{\log_e 10}\left[ x \log_e x - x \right] + C\]
\[ = \frac{1}{\log_e 10} \times x \left( \log_e x - 1 \right) + C\]
\[ = x \left( \log_e x - 1 \right) \cdot \log_{10} e + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
` ∫ tan^5 x dx `
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int x \sin^3 x\ dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]