मराठी

∫ 4 Sin X + 5 Cos X 5 Sin X + 4 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\left( \frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \right)dx\]
\[and\text{ let 4 sin x + 5 cos x = A } \left( 5 \sin x + 4 \cos x \right) + B \left( 5 \cos x - 4 \sin x \right) . . . (1) \]
\[ \Rightarrow 4 \sin x + 5 \cos x = \left( 5A - 4B \right) \sin x + \left( 4A + 5B \right) \cos x\]
\[\text{By equating the coefficients of like terms we get}, \]
\[5A - 4B = 4 . . . \left( 2 \right)\]
\[4A + 5B = 5 . . . \left( 3 \right)\]

By solving eq (2) and eq (3) we get,

\[A = \frac{40}{41}, B = \frac{9}{41}\]
\[\text{Thus, by substituting the values of A and B in eq} (1) , we get\]
\[I = \int\left[ \frac{\frac{40}{41}\left( 5 \ sinx + 4 \cos x \right) + \frac{9}{41}\left( 5 \ cos x - 4 \ sin x \right)}{\left( 5 \sin x + 4 \cos x \right)} \right]dx\]
\[ = \frac{40}{41}\int dx + \frac{9}{41}\int\left( \frac{5 \cos x - 4 \sin x}{5 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 5 sin x + 4 cos x = t}\]
\[ \Rightarrow \left( 5 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{40}{41}x + \frac{9}{41}\int\frac{1}{t}dt\]
\[ = \frac{40}{41}x + \frac{9}{41} \text{ ln }\left| t \right| + C\]
\[ = \frac{40}{41}x + \frac{9}{41} \text{ ln } \left| 5 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.24 | Q 11 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×