हिंदी

∫ 4 Sin X + 5 Cos X 5 Sin X + 4 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\left( \frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \right)dx\]
\[and\text{ let 4 sin x + 5 cos x = A } \left( 5 \sin x + 4 \cos x \right) + B \left( 5 \cos x - 4 \sin x \right) . . . (1) \]
\[ \Rightarrow 4 \sin x + 5 \cos x = \left( 5A - 4B \right) \sin x + \left( 4A + 5B \right) \cos x\]
\[\text{By equating the coefficients of like terms we get}, \]
\[5A - 4B = 4 . . . \left( 2 \right)\]
\[4A + 5B = 5 . . . \left( 3 \right)\]

By solving eq (2) and eq (3) we get,

\[A = \frac{40}{41}, B = \frac{9}{41}\]
\[\text{Thus, by substituting the values of A and B in eq} (1) , we get\]
\[I = \int\left[ \frac{\frac{40}{41}\left( 5 \ sinx + 4 \cos x \right) + \frac{9}{41}\left( 5 \ cos x - 4 \ sin x \right)}{\left( 5 \sin x + 4 \cos x \right)} \right]dx\]
\[ = \frac{40}{41}\int dx + \frac{9}{41}\int\left( \frac{5 \cos x - 4 \sin x}{5 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 5 sin x + 4 cos x = t}\]
\[ \Rightarrow \left( 5 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{40}{41}x + \frac{9}{41}\int\frac{1}{t}dt\]
\[ = \frac{40}{41}x + \frac{9}{41} \text{ ln }\left| t \right| + C\]
\[ = \frac{40}{41}x + \frac{9}{41} \text{ ln } \left| 5 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 11 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×